По подписке

Математика в машинном обучении

Марк Питер Дайзенрот , А. Альдо Фейзал , Чен Сунь Он

3

Рейтинг

≈10 часов

Время чтения

Читать в приложении

60 дней бесплатно

Чуть-чуть за 0 ₽ 399 ₽

Доступ к основному каталогу После окончания пробного периода будет списана стоимость подписки за 1 месяц — 399 ₽

Доступ к платному каталогу книг с возможностью получить 1 книгу каждый месяц навсегда

Попробовать бесплатно Все варианты приобретения

Фундаментальные математические дисциплины, необходимые для понимания машинного обучения, — это линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика. Традиционно все эти темы размазаны по различным курсам, поэтому студентам, изучающим data science или computer science, а также профессионалам в МО, сложно выстроить знания в единую концепцию.

Эта книга самодостаточна: читатель знакомится с базовыми математическими концепциями, а затем переходит к четырем основным методам МО: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов.

Тем, кто только начинает изучать математику, такой подход поможет развить интуицию и получить практический опыт в применении математических знаний,
а для читателей с базовым математическим образованием книга послужит отправной точкой для более продвинутого знакомства с машинным обучением.

Марк Питер Дайзенрот, А. Альдо Фейзал, Чен Сунь Он
авторы
Сергей Черников
переводчик
Издательство Питер
издатель

Информация

16+
Возраст
Русский
Язык